
Humboldt-Universität zu Berlin
Institut für Informatik

Lehrstuhl für Algorithmen und Komplexität

3-SAT ∈ RTIME(1.32971n)
Improving Initial Assignments for

Randomized Local Search for 3-SAT

Using Joint Clause Pairs

Diploma Thesis

Daniel Rolf 1

January 30, 2003

Supervisor: Dr. Deryk Osthus

1rolf@informatik.hu-berlin.de

Abstract

This paper deals with worst case bounds on the NP-complete 3-SAT prob-
lem. Using an elegant simple random walk algorithm U. Schöning showed
in 1999 that a satisfying assignment for a satisfiable 3-SAT formula can be
found in O ((4/3 + ε)n) expected running time. In 2002 T. Hofmeister, U.
Schöning, R. Schuler and O. Watanabe lowered this bound to O (1.3302n)
by using improved assignments for Schöning’s 4/3-algorithm, based on the
observation that a clause abc has only 7 satisfying assignments. The running
time decreases with the number of a maximum set I of independent clauses
that can be found. On the other hand, if this I is small, it is better to set all
clauses to one of the 7 satisfying assignments, to simplify the formula, and
to solve this formula, which is, as a consequence of the maximum property
of I, a formula in 2-CNF and thus efficiently solvable.

We use pairs of clauses that share one or two variables in order to further
improve the initial assignments. The randomized algorithm stated here has
expected running time O(1.32971n).

Declaration

Herewith I declare that this paper was written independently and using only
the stated resources and referred literature.

Moreover, I agree that this paper is going to be made public in the Branch
Library of Mathematics/Computer Science, University Library of the Hum-
boldt University Berlin.

Daniel Rolf January 30, 2003, Berlin

Acknowledgments

I want to thank my supervisor Deryk Osthus for introducing the topic to
me, for his patience, for inspecting and verifying my ideas, and for a great
course on Randomized Algorithms. Also, I want to thank Deryk Osthus and
Anusch Taraz for proofreading this paper.

Furthermore, I want to thank all my dear fellows, which accompanied me
through the years during my computer science and physics studies.

Last but not least, I want to thank my and Linda’s family, and, above
and beyond everything else, I want to thank my beloved better half Linda.

Contents

1 Introduction 1

2 New Upper Bound for 3-SAT 4
2.1 Joint 3-Clause Pairs . 4
2.2 Improved Algorithm for 3-SAT 5
2.3 Outlook . 9

A Expectation Computation 11

Bibliography 17

v

Chapter 1

Introduction

A boolean formula F on n variables can be described as a mapping {0, 1}n 7→
{0, 1}, which maps the enumerated variables to values, where 0 means false
and 1 is true. F is said to be in k-CNF if F is a conjunction of a set of clauses,
where each clause contains a disjunction of k literals, and where a literal is a
variable or its negation. We call a clause C a k-clause if it contains exactly
k unique variables. W.l.o.g. we assume that each clause consists of exactly
k unique variables and that no clause appears twice in the formula. Thus a
3-CNF formula on n variables contains O(n3) clauses. Hence, it is sufficient
to write bounds in terms of n. The problem of deciding whether a k-CNF
formula F has a satisfying assignment is well known as the k-SAT problem,
which is NP-complete. Hence, if NP 6= P holds (which is widely assumed),
there is no hope to find a polynomial time algorithm for the k-SAT problem.
This paper deals with the 3-SAT problem, so we will use “formula” to stand
for a formula in 3-CNF.

Let S be a set and L ⊆ S. A decision algorithm for L decides the
question of membership of w in L for any element w ∈ S. Let A be a
randomized algorithm for L, which, if w 6∈ L holds, always returns false,
and, if w ∈ L is true, returns a proof for w ∈ L with probability at least p(w).
Then A is called a randomized one-sided erroneous algorithm with success
probability at least p(w). If one independently repeats A until it returns a
proof or N unsuccessful repetitions occurred, one obtains a new randomized
one-sided erroneous algorithm with a success probability which is at least
1− (1− p(w))N . On the other hand, if w ∈ L holds, we may independently
repeat A until it finds a proof for w ∈ L. This new randomized algorithm
has expected running time at most 1/p(w) if indeed w ∈ L holds, but would

1

CHAPTER 1. INTRODUCTION 2

run forever if w ∈ L were wrong.
We will present a new randomized algorithm for 3-SAT, which lowers the

currently known best bound on the expected running time, O (1.3302n) (cf.
[3]), to find a satisfying assignment for a satisfiable formula F .

A naive approach is to enumerate all possible assignments and to check for
each one whether it satisfies F . This algorithm has complexityO (poly(n) · 2n).
In this paper poly(n) is used to denote a polynomial in n with poly(n) ≥ 1.
We will not consider polynomial factors in complexity calculations because
we always expect an exponential expression which outweighs all polynomials
for large problems. The best deterministic algorithm, known up to date, has
a complexity O (1.490n) and was given in [1]. In 1999 in [2] Schöning estab-
lished the following beautiful randomized algorithm with expected running
time O (poly(n) · (4/3)n).

Algorithm RWSolve(formula F)

1. Repeat:

(a) Let a be an assignment uniformly drawn at random from {0, 1}n.

(b) Call a := RW (F, a).

(c) If a 6= null then return a.

Algorithm RW (formula F, assignment a)

1. Repeat for 3n steps:

(a) If F (a) = 1 then return a.

(b) Select an arbitrary clause C ∈ F that is not satisfied by a.

(c) Flip one literal in C uniformly at random in the assignment a.

2. Return null.

To bound the running time of RW Schöning proved the following the-
orem, which bounds the success probability of algorithm RW in terms of
the hamming distance d(a, a∗) of the initial assignment a to some satisfying
assignment a∗.

Theorem 1. Let F be a satisfiable formula and a∗ be a satisfying assignment
for F . For each initial assignment a the probability that algorithm RW (a)
finds a∗ is at least (1/2)d(a,a∗)/poly(n).

CHAPTER 1. INTRODUCTION 3

Schöning used this to show that, if we draw some assignment uniformly
at random and call algorithm RW with this assignment, we find a satisfy-
ing assignment with probability at least (3/4)n/poly(n), which immediately
yields the O (poly(n) · (4/3)n) expected running time bound. The following
algorithm is a generalization of this idea, which enables us to use assignments
with different probabilities.

Algorithm Solve(formula F, assignment probability distribution pa)

1. Draw some assignment a with probability pa.

2. Call RW (F, a).

Immediately from Theorem 1 we have the following corollary.

Corollary 1. Let F be a satisfiable formula and a∗ be a satisfying assignment
for F . Let pa be a probability distribution that maps each assignment a to
some probability. The probability that algorithm Solve(F, pa) finds a∗ is at
least E[(1/2)d(a,a∗)]/poly(n), where the expectation is computed w.r.t. pa.

In the next section we will see that much information can be extracted
from the structure of the formula F to get better initial assignments than by
drawing one uniformly at random.

Chapter 2

New Upper Bound for 3-SAT

2.1 Joint 3-Clause Pairs

We say that two clauses C1 and C2 form a joint 3-clause pair if they share one
or two variables. For example abc and ade form a joint 3-clause pair. We call
this an n-joint 3-clause pair since they share one variable with different signs.
Observe that there are only 24 possible assignments to X = {a, b, c, d, e}
which satisfy both clauses. Let 1/µT denote the number of possible assign-
ments for a T -joint 3-clause pair where T is one of the possible five types
n, p, nn, np and pp. Fix some arbitrary satisfiable formula F and let a∗ be
a satisfying assignment for F . Then exactly one of the 1/µT assignments
to X agrees with a∗X since a∗ also has to satisfy both clauses. If we choose
one assignment uniformly at random from the possible ones, we encounter
a∗X with probability µT . We will refer to this selection as the BT randomized
setting scheme for X. Clause pairs that share three variables are called akin
clauses, but observe that they do not satisfy our definition of joint 3-clause
pairs.

From Corollary 1 we know that we may get a higher success probability
for algorithm Solve if we improve the probability distribution pa to bias on
assignments that are near to a∗. Also, if we partition the variables of F in
disjoint sets X1 to Xk and compute for each set Xi the individual expectation
E[(1/2)d(aXi

,a∗Xi
)], then the full E[(1/2)d(a,a∗)] expectation is simply computed

by multiplying the expectations of all sets Xi as long as all random processes
are mutually independent between the Xi. For C1 and C2 we can compute
an assignment probability distribution for X = {a, b, c, d, e} that yields an

4

CHAPTER 2. NEW UPPER BOUND FOR 3-SAT 5

expectation of at least 27/110 ≥ 0.24545 (using uniform random assign-
ments we would get only (3/4)5 ≥ 0.2373). This is achieved by maximizing
E[(1/2)d(aX ,a∗X)] w.r.t. all possible assignment distributions for the respective
partition X. Generally, this can be done for each type T and with λT we
denote the maximum expectation E[(1/2)d(aX ,a∗X)] for type T . The process
of selecting an assignment for X using the mentioned assignment probability
distribution is called the RT randomized initialization scheme for X.

The following table shows possible cases and their λ and µ values. See
Appendix A for computation details.

Type Example λ. µ.

n abc ∧ ade 27/110 1/24
p abc ∧ ade 81/331 1/25

nn abc ∧ abd 15/46 1/12
np abc ∧ abd 27/82 1/12
pp abc ∧ abd 27/83 1/13
3 abc 3/7 1/7
s 3/4 1/2

Type 3 shows the values for a single 3-clause and type s for a single
variable.

2.2 Improved Algorithm for 3-SAT

The following one-sided erroneous algorithm tries to find a satisfying assign-
ment for a satisfiable formula F . It is very similar to the one given in [3],
which uses single 3-clauses and which has a success probability of at least
1.3302−n. Each step is prefixed with the formula used in context, i.e. the
operations in question are performed with respect to that formula. The fol-
lowing algorithm uses sets M. and we (later on) use m. to abbreviate |M.|.

Algorithm JointSolve(formula F)

1. F : Copy to G.

2. G: While there exists a 3-clause pair (C1, C2) do, whilst T is the type
of (C1, C2):

(a) Add (C1, C2) to the respective set MT .

CHAPTER 2. NEW UPPER BOUND FOR 3-SAT 6

(b) Fix the variables of (C1, C2) using the BT randomized setting
scheme and simplify.

3. G: For each 3-clause C do the following:

(a) Add C to M3

(b) Fix one arbitrary variable of C using the Bs randomized setting
scheme and simplify.

4. G: Solve using any 2-SAT polynomial time solver. If it was successful,
then output the assignment of G extended to a satisfying assignment
of F (using the fixed variables) and halt with positive result.

5. F : Initialize for each type T ∈ {n, p, nn, np, pp} all clause pairs in MT

using the RT randomized initialization scheme, all clauses in M3 using
the R3 randomized initialization scheme, and all other variables using
the Rs randomized initialization scheme. Run algorithm RW with this
assignment. If it was successful, then output the assignment and halt
with positive result.

The following proposition bounds the success probabilities of the two
strategies used in the algorithm above.

Proposition 1. Step 4 is successful with probability p1 at least∏
T∈{n,p,nn,np,pp}

µmT
T · µm3

s (2.1)

and step 5 is successful with probability at least p2/poly(n) where p2 is∏
T∈{n,p,nn,np,pp,3}

λmT
T · λn−5(mn+mp)−4(mnn+mnp+mpp)−3m3

s . (2.2)

Proof. Bound (2.1) is achieved as follows. For each clause in MT we decide
to use the right assignment with probability at least µT . For each clause in
M3 we set one variable to the right value with probability at least µs. The
final formula contains no 3-clause anymore and thus is solvable in polynomial
time.

Bound (2.2) is a little more difficult. Fix MP :=
⋃

T∈{n,p,nn,np,pp} MT . We
have to show that all clause pairs in MP and single clauses in M3 are mutually

CHAPTER 2. NEW UPPER BOUND FOR 3-SAT 7

independent. In the first stage the algorithm eliminates all 3-clause pairs,
so after that stage there is no 3-clause pair left. Furthermore, there are not
any akin clauses in M3. Hence, all clauses in M3 are mutually independent
and mutually independent to all 3-clause pairs in MP . Assume that there
are two dependent 3-clause pairs A, B ∈ MP , A 6= B. W.l.o.g. A was added
before B, but then all variables of A had been fixed before B was processed,
but that means that B cannot consist of two 3-clauses anymore.

Finally, we claim the following proposition, which is the main result of
this paper.

Proposition 2. Let F be a satisfiable formula on n variables. The algorithm,
which is obtained by repeating JointSolve(F) until it encounters a satisfying
assignment, has expected running time at most O(1.32971n).

Proof. We will calculate p := max{p1, p2}, then p/poly(n) is a lower bound
for the success probability of algorithm JointSolve. So, the claimed expected
running time is at most O (1/p · (1 + ε)n) for some arbitrary small ε > 0. At
first, we take the logarithm and simplify both bounds to obtain

ln p2 ≥ f+(−→m) := −→c + · −→m − k,

ln p1 ≥ f−(−→m) := −→c − · −→m with
−→m := (mn, mp, mnn, mnp, mpp, m3)

T ,

−→c + :=

(
ln

512

495
, ln

1024

993
, ln

640

621
, ln

128

123
, ln

256

249
, ln

64

63

)T

,

−→c − := − (ln 24, ln 25, ln 12, ln 12, ln 13, ln 2)T , and

k := ln
4

3
· n.

We compute the intersection plane where f+(−→m) = f−(−→m) holds. The hes-
sian normal form of this plane is (−→c + − −→c −)−→m = k. Obviously f+(−→m) is
increasing above and f−(−→m) is increasing below this plane. Thus the min-
imum of f(−→m) := f+(−→m) = f−(−→m) on the plane is the global minimum of
ln p. Finally, we have the following linear program.

Minimize f(−→m)

w.r.t. −→m ∈ R6
+,

u ∈ R+,

(−→c + −−→c −)−→m = k, (2.3)

and −→m · (5, 5, 4, 4, 4, 3)T + u = n.

CHAPTER 2. NEW UPPER BOUND FOR 3-SAT 8

The last constraint states that the number of covered variables cannot exceed
n. u is introduced as slack variable to obtain an equation instead of an
inequality. From the theory of linear programming (cf. [4]) we know that
the minimum will be attained on some intersection of the border planes of the
solution space. We set all m. except mp to 0 and solve f+(−→m) = f−(−→m) w.r.t.
mp to obtain mp = n · ln(4/3)/ ln(25600/993) and u = n − 5mp. Observe
that this is a feasible basic solution to the linear program, i.e. one that
satisfies all constraints. We will rewrite the objective function f(−→m) using
the null (non-basic) variables (by solving constraint (2.3) for mp) and verify
that all coefficients of non-basic variables are positive. From the theory of
the Simplex Method we know that −→m is a minimal solution if all non-basic
variables in this rewritten form have positive coefficients. Solving constraint
2.3 for mp yields

mp =
k −

∑
T∈{n,nn,np,pp,3}

(
c+
T − c−T

)
mT

c+
p − c−p

where −→c + and −→c − are indexed in a similar way to −→m. For the coefficients
of f(−→m) in the rewritten form as stated above we obtain

−→
d := (dn, dnn, dnp, dpp, d3)

T ,

f(−→m) =
∑

T∈{n,nn,np,pp,3}

dT mT , and thus

dT = c−T − c−p
c+
T − c−T

c+
p − c−p

.

We calculate
−→
d and round its values off to obtain

−→
d ≥

0.0033
0.0063
0.0159
0.0031
0.0090

and see that all coefficients are positive.

We conclude that

p ≥ e−n·2 ln(5) ln(4/3)/ ln(25600/993) ≥ 1.329709665−n

holds. Therefore, the claim follows.

CHAPTER 2. NEW UPPER BOUND FOR 3-SAT 9

2.3 Outlook

We saw that information about the structure of a formula F can be converted
to better probability spaces for Schöning’s algorithm and for the 2-SAT re-
duction strategy. One may generalize this idea and use more complex local
patterns than pairs to cover the dependency graph. A local pattern P is a
tuple (FP , nP , BP , µP , RP , λP) where FP is a formula on nP variables, where
BP is a randomized setting scheme for FP with a success probability of at
least µP , and where RP is a randomized initialization scheme for FP which
has some assignment probability distribution pa that achieves for all satisfy-
ing assignments a∗ of FP an expectation E[(1/2)d(a,a∗)] of at least λP (where
the expectation is computed w.r.t. pa).

We also saw that exactly one local pattern determines the computed
expectation, the worst case happens if all extracted independent subsets are
instances of this (bad) local pattern, i.e. the expected running time decreases
with the number of instances of better local patterns. An inspection of the
proof of Proposition 2 shows that we can define an outcome for some local
pattern P as

oP := µP
rP with

rP :=
ln(3/4)

ln λP − ln(3/4)nP − ln µP
.

Applying a local pattern P to a formula F in 3-CNF means to collect
all independent instances of P into some set MP , to apply the BP setting
scheme to all members of MP , and to simplify F .

Fix some formula F and let Ψ be a finite sequence of local patterns.
We call Ψ sufficient for F if F is reduced to a 2-CNF after applying all
local patterns in Ψ. Observe that the order of Ψ is important (cf. algo-
rithm JointSolve). Perhaps the following conjecture can be proven using a
generalized version of the proof of Proposition 2.

Conjecture 1. Let Ψ(F) be a function that computes a sufficient finite se-
quence of local patterns for a formula F in polynomial time and let F be a
satisfiable formula on n variables. Then for some arbitrary small ε > 0 a
satisfying assignment for F can be found in expected running time at most

O
((

(1 + ε) max
P∈Ψ

oP

)n)
.

CHAPTER 2. NEW UPPER BOUND FOR 3-SAT 10

If this conjecture holds, one will be able to devise new similar algorithms
using better sufficient local pattern sequences.

Intuitively, complex patterns, which introduce more dependencies be-
tween the variables involved, will yield in better outcomes. Alas, they will
also result in more complex analysis of their λ and µ values. It is an inter-
esting research question if there is a general (nontrivial) lower bound on the
outcome of any possible local pattern, which would show the limits of our
approach.

Appendix A

Expectation Computation

The simplest way to compute a good distribution for some type is to build
an expectation function for each target assignment and to maximize them.
Since all functions are linear w.r.t. to the source assignment probabilities,
this is done by calculating the equation point for all functions. We give a
simple C program that outputs all functions and a command, so one may
copy and paste this to Mapler and let Mapler find the best distribution.

The type of the target assignment is specified by the isSatisfied func-
tion that has to verify the binary encoding of an assignment and return
whether it would satisfy this type. For type 3 this is done by the following.

int isSatisfied(

int assignment)

{

return

((assignment>>0) & 1) ||

((assignment>>1) & 1) ||

((assignment>>2) & 1);

}

The following is an auxiliary function that converts the binary encoding
of an assignment to a string.

void assignmentToString(int assignment,

int length,

char* buffer)

{

11

APPENDIX A. EXPECTATION COMPUTATION 12

while(length-- > 0)

{

*(buffer++)= assignment & 1 ? ’1’ : ’0’;

assignment= assignment >> 1;

}

*buffer= 0;

}

The following is a function that computes the hamming distance between
two assignments.

int hammingDistance(

int assignment1,

int assignment2)

{

int dist= 0;

while(assignment1 || assignment2)

{

if((assignment1 & 1) != (assignment2 & 1))

dist++;

assignment1= assignment1 >> 1;

assignment2= assignment2 >> 1;

}

return dist;

}

The next function is the main function that outputs all functions and
commands to feed into Maple. The constant length has to be set to the
number of variables in the assignments.

int main()

{

const length= 3;

char buffer[16];

for(int target= 0;

target < (1 << length);

APPENDIX A. EXPECTATION COMPUTATION 13

target++)

{

if(isSatisfied(target))

{

assignmentToString(target, length, buffer);

printf("f_%s := ", buffer);

int first= 1;

for(int source= 0;

source < (1 << length);

source++)

{

if(isSatisfied(source))

{

if(first) first= 0;

else printf(" +\n");

assignmentToString(source, length, buffer);

printf("1/%d*p_%s",

1 << hammingDistance(source, target),

buffer);

}

}

printf(";\n");

}

}

printf("p := ");

int first= 1;

for(int source= 0;

source < (1 << length);

source++)

{

if(isSatisfied(source))

{

if(first)

first= 0;

else

printf(" +\n");

APPENDIX A. EXPECTATION COMPUTATION 14

assignmentToString(source, length, buffer);

printf("p_%s", buffer);

}

}

printf(";\n");

printf("solve({ p=1");

int target0;

first= 1;

for(target= 0;

target < (1 << length);

target++)

{

if(isSatisfied(target))

{

if(first)

{

target0= target;

first= 0;

}

else

{

printf(", ");

assignmentToString(target0, length, buffer);

printf("f_%s", buffer);

assignmentToString(target, length, buffer);

printf("=f_%s", buffer);

}

}

}

printf("});\n");

}

n-Joint 3-Clause Pairs

W.l.o.g. this type is covered by the clause pair abc ∧ cde. Satisfying assign-
ments of this case are verified by

APPENDIX A. EXPECTATION COMPUTATION 15

(((a >> 0) & 1) || ((a >> 1) & 1) || ((a >> 2) & 1)) &&

(!((a >> 2) & 1) || ((a >> 3) & 1) || ((a >> 4) & 1)).

Use the probabilities p00101 = 4/55, p01011 = 3/55, p10011 = 3/55, p10010 =
2/55, p11110 = 3/55, p11101 = 3/55, p11011 = 3/110, p01111 = 1/55, p11000 =
2/55, p01000 = 4/55, p10001 = 2/55, p00111 = 2/55, p01001 = 2/55, p10111 =
1/55, p10110 = 2/55, p01110 = 2/55, p01010 = 2/55, p10000 = 4/55, p11111 =
3/110, p01101 = 2/55, p10101 = 2/55, p11010 = 1/55, p00110 = 4/55, p11001 =
1/55, and all other p. = 0 to maximize the expectation to λn = 27/110.
Obviously is µn = 1/24.

p-Joint 3-Clause Pairs

W.l.o.g. this type is covered by the clause pair abc ∧ cde. Satisfying assign-
ments of this case are verified by

(((a >> 0) & 1) || ((a >> 1) & 1) || ((a >> 2) & 1)) &&

(((a >> 2) & 1) || ((a >> 3) & 1) || ((a >> 4) & 1)).

Use the probabilities p01110 = 4/331, p01101 = 4/331, p10101 = 4/331,
p11110 = 10/331, p10100 = 16/331, p01111 = 10/331, p11101 = 10/331, p11111 =
13/331, p10111 = 10/331, p01011 = 12/331, p11100 = 16/331, p10010 = 24/331,
p01010 = 24/331, p00101 = 16/331, p00111 = 16/331, p00100 = 16/331, p00110 =
16/331, p10110 = 4/331, p11010 = 12/331, p10011 = 12/331, p11001 = 12/331,
p01100 = 16/331, p11011 = 6/331, p10001 = 24/331, p01001 = 24/331, and all
other p. = 0 to maximize the expectation to λp = 81/331. Obviously is
µp = 1/25.

nn-Joint 3-Clause Pairs

W.l.o.g. this type is covered by the clause pair abc ∧ bcd. Satisfying assign-
ments of this case are verified by

(((a >> 0) & 1) || ((a >> 1) & 1) || ((a >> 2) & 1)) &&

(!((a >> 1) & 1) || !((a >> 2) & 1) || ((a >> 3) & 1)).

Use the probabilities p0111 = 5/69, p1001 = 5/46, p0100 = 8/69, p0101 =
2/23, p0010 = 8/69, p1100 = 2/23, p0011 = 2/23, p1111 = 5/46, p1000 = 5/69,
p1011 = 2/69, p1010 = 2/23, p1101 = 2/69, and all other p. = 0 to maximize
the expectation to λnn = 15/46. Obviously is µnn = 1/12.

APPENDIX A. EXPECTATION COMPUTATION 16

np-Joint 3-Clause Pairs

W.l.o.g. this type is covered by the clause pair abc ∧ bcd. Satisfying assign-
ments of this case are verified by

(((a >> 0) & 1) || ((a >> 1) & 1) || ((a >> 2) & 1)) &&

(!((a >> 1) & 1) || ((a >> 2) & 1) || ((a >> 3) & 1)).

Use the probabilities p1111 = 5/82 p0011 = 4/41 p1001 = 3/41 p1110 = 4/41
p0010 = 4/41 p0101 = 6/41 p1000 = 6/41 p1010 = 1/41 p1011 = 5/82 p0110 = 4/41
p1101 = 3/41 p0111 = 1/41, and all other p. = 0 to maximize the expectation
to λnp = 27/82. Obviously is µnp = 1/12.

pp-Joint 3-Clause Pairs

W.l.o.g. this type is covered by the clause pair abc ∧ bcd. Satisfying assign-
ments of this case are verified by

(((a >> 0) & 1) || ((a >> 1) & 1) || ((a >> 2) & 1)) &&

(((a >> 1) & 1) || ((a >> 2) & 1) || ((a >> 3) & 1)).

Use the probabilities p1011 = 2/83, p0010 = 8/83, p0100 = 8/83, p0101 =
8/83, p1010 = 8/83, p1100 = 8/83, p1001 = 12/83, p0111 = 4/83, p0110 = 4/83,
p0011 = 8/83, p1101 = 2/83, p1110 = 4/83, p1111 = 7/83, and all other p. = 0
to maximize the expectation to λpp = 27/83. Obviously is µpp = 1/13.

3-Clause

W.l.o.g. this type is covered by the clause abc. Satisfying assignments of this
case are verified by

(((a >> 0) & 1) || ((a >> 1) & 1) || ((a >> 2) & 1)).

Use the probabilities p001 = 4/21 p100 = 4/21 p111 = 1/7 p011 = 2/21
p101 = 2/21 p110 = 2/21 p010 = 4/21, and p000 = 0 to maximize the expecta-
tion to λ3 = 3/7. Obviously is µ3 = 1/7.

Single Variable

This case is trivial. Use p0 = 1/2 and p1 = 1/2 to obtain λs = 3/4. µs is
1/2.

Bibliography

[1] E. Dantsin, A. Goerdt, E. A. Hirsch, and U. Schöning. Deterministic algo-
rithms for k -SAT based on covering codes and local search. In Automata,
Languages and Programming, pages 236–247, 2000.

[2] U. Schöning. A probabilistic algorithm for k-SAT and constraint satis-
faction problems. In Proceedings of the 40th Annual IEEE Symposium
on Foundations of Computer Science, pages 410–414. IEEE, 1999.

[3] R. Schuler, U. Schöning, and O. Watanabe. A probabilistic 3-sat algo-
rithm further improved. In STACS 2002, 19th Annual Symposium on
Theoretical Aspects of Computer Science, Proceedings, volume 2285 of
Lecture Notes in Computer Science, pages 192–202. Springer, 2002.

[4] R. J. Vanderbei. Linear Programming: Foundations and Extensions.
Kluwer Academic Publishers, Boston, 1996.

17

	Introduction
	New Upper Bound for 3-SAT
	Joint 3-Clause Pairs
	Improved Algorithm for 3-SAT
	Outlook

	Expectation Computation
	Bibliography

